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Abstract: The article deals with the problem of so-called bottlenecks in high-
performance multiprocessor systems, namely the conflicts for the access to a common 
system bus shared by all processors. They showed and described the possibility of 
implementation between the processors and the memory of the hardware-implemented 
memory buffer module necessary for quick access to memory (the associative memory 
on fast registers is used in a buffer device) of the multiprocessor system with a widely 
used "common bus" interface. The buffer is implemented on the register memory and 
consists of two parts, one of which is responsible for data record, the other one is used 
for reading. In the course of the research, the functional organization of the module 
has been determined, the algorithms for its operation have been developed and 
implemented, the VHDL file describing the operation of the device has been created 
and debugged, and simulation was performed in ISE Web Pack software. Due to the 
capabilities of the applied modern element base (programmable logic integrated 
circuits (PLIC)), the buffer device described in the article is reconfigurable and cross-
platform. Due to the application of the described module, it is possible to solve 
partially the problem of the multiprocessor system "bottleneck" with the "common 
bus" interface. After the practical use of the described device, the throughput of the 
subsystem "processor-memory" and, accordingly, the performance of the entire 
multiprocessor system as a whole, will be increased. 
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1 Introduction  

The whole life of a modern man is literally imbued with 
computer technology: computers and the computer systems (CS) 
created on their basis. They penetrated everywhere: in household 
appliances, devices, communication devices, etc. The list can be 
continued for a long time. Among all the CS multiprocessor 
systems (MPS) stand apart, which are actively used for laborious 
calculations, for example, to model complex processes and other  

scientific calculations, which require a huge performance and 
well-coordinated work of the subsystem "processor-memory."  

The device developed and described in the article is intended for 
fast access to memory and processor load reduction. The result 
of this module use is a significant reduction of memory loading, 
the bandwidth of the "processor-memory" subsystem is 
increased and the speed of the MPS in general is also increased. 

2 Problem formulation 

The presented article is of a research nature in general. A 
number of literature sources (Biktashev & Knyazkov, 2004; 
Haemacher et al, 2003; Tsilker & Orlov, 2011) was analyzed to 
find unaffected issues and unresolved problems during the 
subject area study. A number of problematic issues related to the 
possibility of the memory buffer hardware implementation for 
multiprocessor systems to unload the processor-memory 
subsystem has not been adequately reflected in existing 
publications, the problematic issues were analyzed partially in 
(Martyshkin, 2014; Martyshkin, 2015; Timofeeva et al, 2017). 
 
The purpose of the paper is to describe the consideration of 
possible algorithms for buffer memory device (BMD) operation 
of MPS memory with a common bus (CB) interface, which 
includes 4 processors (Figure 1). This issue is topical today due 
to global informatization and almost universal operation of huge 
amounts of data. In order achieve this goal, the article solves the 
problems of the device structure determination and the principles 
and the algorithms of its functioning. In existing MPS, several 
devices may apply for CB loading simultaneously, however, 
only one of them is possible to do it at any moment. In order to 
avoid possible conflicts, the CB must choose the mechanisms for 
request arbitration and the rules for a bus granting to a particular 
device among all those which requested it (Suvorova & Sheinin, 
2003; Villalobos Antúnez, 2001). 

 

 

 
Fig 1. Block diagram of a four-processor system with a hardware memory buffer 
 
The CB is presented in accordance with AMBA (Advanced 
Microcontroller Bus Architecture) specification (13), developed 
as a communication standard for high-performance systems-on-
chip (Martyshkin & Yasarevskaya, 2015; Martyshkin & 2016; 
Salnikov et al, 2016).  
 
The AMBA standard, the bus protocol and organization are in a 
good agreement with the design of synthesizable, parametrizable 
modules and the systems-on-chip based on them. The AMBA 
bus standard includes three bus specifications: 

 AHB - Advanced High-performance Bus. 
 ASB - Advanced System Bus. 

 APB - Advanced Peripheral Bus. 

Currently, AMBA-based communication systems are widely 
used in aerospace systems-on-a-chip. For example, AMBA 
buses are used to organize the system of communications in 
systems-on-chip on LEON processor core, organized in 
accordance with the SPARC V8 architecture .The AMVA AHB 
bus is also used in the developed domestic systems-on-the-chip, 
for example, within the framework of the "Multicore" project . 

The AMBA standard is designed to develop high-performance 
systems. In accordance with this standard the data exchange is 
carried out in synchronous mode. The standard provides the 
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support for packet transfers and split transactions. The system 
must have no more than 16 master devices, the number of slaves 
is unlimited. The organization of communications by bus is 
carried out under the management of an arbitrator. 

In order to implement the HBD, the AMBA AHB bus is used, 
acting as an intermediary between the processor and the 
memory. When the operation (transaction) of memory record or 
reading is performed continuously, the CB handles one of the 
system processors exclusively until the operation is completed. 
Thus, the bus and the processor are in the standby mode until the 
memory performs a physical reading or writing procedure. Thus, 
bus cycles are lost that could be used by other processors. In 
order to reduce the time losses and increase the bandwidth of the 
CB, it is necessary that it supports the modes of reading 
transaction splitting and record transaction buffering. 

The memory read operation is subjected to splitting, and it is 
divided into an address transaction and a data transaction. When 
memory is required the processor sets an address to a CB, which 
is stored in HBD, after which the CB is released and the 

processor goes into the standby mode. The physical reading 
procedure takes place in the memory itself under HBD control, 
which at the end of the physical read procedure should signal the 
requesting processor about data readiness. In response, the 
processor requests CB again and reads the data word from HBD. 

The buffering of record transactions is that the processor puts the 
address of the memory cell and the data to be written to the bus. 
They are stored in HBD registers, after which the processor 
releases the CB, since there is no reverse memory reaction in this 
case. The procedure of physical record in memory is performed 
under HBD control. 

It follows from the stated above that a developed unit should be 
equipped with two buffer devices to store read and record 
transactions (Figure 2). In its turn, the read buffer has two parts. 
The first contains the registers to store the memory cell address 
into which a request is made, the second contains the registers to 
store the data selected from the memory data. The record buffer 
also consists of two parts. The first stores the memory cell 
addresses, which is required, the second stores the recorded data.  

 

Fig 2. Block diagram of the hardware memory buffer in the record (a) and reading (b) mode 
 

The work uses MPC architecture with the Unified Memory 
Access (UMA). In order to increase the memory bandwidth, it is 
divided into a number of independent modules, each of which 
has its own addressing and data buffering schemes. If a bus with 
a transaction splitting is used, it is possible to access the memory 
of several processors simultaneously. The access time to the data 
from memory does not depend on a processor accessing the 
memory, and on a memory chip containing the necessary data. 
At that each processor unit can use its own cache. 

The principle of the device operation is the following one. 
Suppose that one or more processors generated a record 
transaction simultaneously. In order to implement it 

successfully, you need to access the CB, for which the 
processors send the request signals to the arbitrator, which in its 
turn checks whether the CB is currently available and, according 
to some rule, selects one of the processors to perform the 
operation. If the CB is free, then the processor captures it. 
Further, a check is made for record buffer filling, and if it is full, 
the processor is put into the standby mode. If there is at least one 
free register in the record buffer, the processor places the data 
word there. The further work of the processors does not depend 
on the record result, i.e. it makes no sense to wait until the end of 
the record, so it releases the bus.  

A lot of requests can be accumulated in the record buffer, and it 
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is possible that the read request will refer to data already in 
HBD, and not in memory, so they can be read directly from 
HBD, not from the memory, which is much faster, than a request 
to memory. The addressable record buffer is performed in the 
form of associative memory for a fast implementation of this 
function (Martyshkin, 2017). 

The reading procedure with transaction splitting allows a 
simultaneous execution of several transactions generated by 
different processors. At the beginning of the read operation, the 
requesting processor occupies the bus, places the address and 
read signal on it, which are fixed in the reading buffer. This 
transaction is executed quickly because buffers are implemented 
on hardware registers. After this procedure, the processor 
disconnects from the bus. The buffer device carries out the 
process of data physical reading itself from the memory module 
and the process of result storing in one of the read buffer 
registers. At an appropriate moment, when the bus is idle, the 
data is returned to the processor. 

In the systems with shared memory, all processors have equal 
capabilities for a single address space access. A single memory 
can be built as single-block one or by modular principle, but 
usually there is a second option in practice. In order to improve 
performance, it makes sense to apply a memory split to 
addresses into 4 modules. 

A possible structure and the principles of HBD functioning are 
shown in Here we will dwell in detail on the functional 
organization and the algorithms of HBD operation. 

The circuit implementation does not work in VHDL code if you 

do not adhere to the description of a specific element for VHDL 
(for example, the description of a register, a counter, a decoder 
operation, etc.). But still, let's highlight some functional units 
(Figure 3): 

 the unit of a transaction adding to the read queue; 
 the unit of a transaction adding to the record queue; 
 the unit of a pointer increase by the head of the read buffer 

and read queue increase; 
 the unit of a pointer increase by the head of the record buffer 

and record queue increase; 
 the unit for data search in the record buffer when the 

addresses coincide with the read buffer; 
 the reading unit from memory according to the specified 

address; 
 the unit of pointer increase to the tail of processed message 

queue; 
 the unit of record to memory according to the specified 

address; 
 the unit of pointer increase by record buffer tail; 
 the unit of data output to the processor initiating the read 

request. 
On Figure 3, all units are shown in a general view. 

The unit of a transaction adding to the read queue works as 
follows. The internal register RGA1 receives a 32-bit address 
from the processor, by which data should be found. The RGMID 
register is supplied with a 2-bit processor identifier (takes the 
value from 0 to 3 according to the number of processors in a 
system). The enabling signal for the operation of these registers 
is the following combination of signals 

& & &TypeTrans W R Sel . 

 
Fig 3. Functional units of a hardware memory buffer 

The unit of a transaction adding to the record queue works as 
follows. The internal register RGA2 receives a 32-bit address 
from the processor, on which data should be written. The RGD 
register is supplied with 32-bit data from the processor. The 
enabling signal for the operation of these registers is the 
combination of signals & & &TypeTrans W R Sel . 

 The unit of the pointer increase by the head of the read 
buffer and read queue increase operates as follows. The 
entire queue of requests is represented as consisting of the 
"queue head", the "queue tail" and the cell pointer at this 
moment. When you add the following request to the read 
queue, the "head" is incremented by one, and at the same 
time, the read queue increases. This unit can be represented 
in the form of counters. 

 The unit of data search in the record buffer when addresses 
coincide with the read buffer can be implemented on a 32-
bit comparator. One input of which is supplied by the 

address set by the processor in the read buffer, the other is 
supplied with addresses from the record buffer sequentially. 
When the addresses match, the data from the record buffer 
are returned to the processor. If the addresses do not match, 
i.e. the associative search has not provided results, it is 
necessary to access the memory according to the correct 
address. This action is produced by the following unit. 

The unit of reading from memory according to the specified 
address works as follows. From the 32-bit register in which the 
address is stored this address is sent to HBD output, to address 
memory inputs. Two most significant bits of the address are used 
to select the memory module from which you need to read the 
data according to the specified address. A read signal is sent 
from MemR memory, which will be held in the unit for 50 ns - 
the time of data search in memory according to the specified 
address and the reading into the buffer. The data is stored in the 
data register of the read buffer, and when the processor that set 
the address for reading is reconnected to the CB to receive the 
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data, it will read the necessary data from the read buffer. A Split 
signal (processor number) is provided.   

The unit of the pointer to the queue tail of processed messages 
works as follows. When a read operation from memory occurred, 
the data is not provided to the processor immediately. First, a so-
called "queue of processed messages" is created. The message 
queue increases with each new processed transaction. The unit 
can be implemented on the counter. 

The record unit into memory according to the specified address 
operates as follows. Among 32-bit registers in which the address 
and the data are stored in the record buffer, the record to memory 
is performed. Here, two most significant bits of the address are 
used to select a memory module where the data will be recorded. 
A record signal is sent to the MemW memory, which will be 
held for 10 ns - the time of data record into memory. 

The unit of the pointer increase by the tail of the record buffer 
works as follows. During the record to memory, the pointer to 
the buffer tail is incremented by one with each processed 
transaction. After that, one cell is freed in the record buffer. 

The data issue unit to the processor initiating the read request 
operates as follows. As soon as the queue of ready-made orders 
is formed, i.e. all requests of the queue are processed, the data 
from the memory is placed in the read buffer, then the processors 
can pick up the applications intended for them. The data from 
the registers is fed to the DataRead output and the processor 
reads the data. 

Now we will show the variant of HBD algorithm functioning. 
Let's imagine the subsystem "processor-memory" as two 
subsystems: "processor-HBD" and "HBD-memory". Let's 
describe the algorithm of the subsystem "processor-HBD" 
operation. First, the processor checks the blocking line and 
determines whether the CB is free or busy at this moment. 
Suppose a high potential on the block line corresponds to a state 
in which the CB is free. If the processors interrogating the 
blocking line detect a high potential there, they send requests to 
the bus arbitrator. The processor with the highest priority will 
receive a signal confirming the request. After the processor 
captures the CB, an operation type is selected: read or record. In 
the case of a record operation, the record buffer is checked for 
free space and, if it is full, the processor is put into the standby 
mode until a free cell appears. If there is some place, an address 

and data are recorded, after which the processor releases the CB. 
If you select a read operation, the read buffer is first checked for 
free space and if it is absent, the processor is put into standby 
mode until a free cell appears. If there is an available cell, an 
address is recorded, according to which the data must be 
provided for reading. After the procedure of physical reading 
from memory, or the search in the associative memory of the 
record buffer the data is read into the read buffer according to a 
set address. The HBD notifies the processor, which has prepared 
the read data, about the readiness and it takes them from the 
HBD. 

Let's describe the possible algorithm of the subsystem "HBD-
memory". First, you select an operation type: read or write. 
When the record operation is selected, the request for the j-th 
memory module is made, where the data will be recorded sent to 
HBD from the processor. Next, the j-th memory module is 
checked for loading and, if it is full, the subsystem goes into the 
standby mode, and if it is free, the data is recorded to a desired 
address. Then the memory module, like one cell of the write 
buffer, is released: СчБЗ: = СчБЗ-1, where СчБЗ is the record 
buffer (semaphore) (in this paper it is assumed that СчБЗ=10, 
that is, the capacity of the record buffer makes 10 cells). When 
you perform a read operation, the k-th memory module is 
requested, from where the data will be read into HBD, for their 
further transmission to a corresponding processor. After that, the 
k-th memory module is checked for loading and, if it is full, the 
subsystem goes into the standby mode, if it is free, the data is 
read according the desired address: СчБЧт: = СчБЧт+1, where 
СчБЧт is the read buffer counter (semaphore). It is accepted in 
the article that СчБЧт = 30, i.e. the capacity of the read buffer 
makes 30 cells). After that, the read data is written to the cell of 
the read buffer. Then the memory module is released, and the 
HBD notifies the requested processor about the operation. 

3 Experiment results 

Based on these algorithms, the VHDL file describing HBD 
operation was created in ISE WebPack program, and the element 
was synthesized, and its debugging and modeling was 
performed, and operation time-series diagrams were obtained. 
The results of HBD operation modeling are shown on Figure 4. 
According to the obtained time diagrams, we can judge the 
correctness of a device according to the developed algorithms, 
by which it is possible to speak about the correct functioning of 
the device according to the algorithms described above. 

 

 
Fig 4. Time diagrams for HBD memory operation 
 
The diagram has the following signals: clk - clock signal, R - 
reading signal, TypeTrans - operation selection signal (1 - 
record, 0 - read), W - record signal, MemR - memory read 
signal, MemW - memory record signal, Addr (31: 0) - 32-bit 
address, OutAddr (31: 0) - the address at the device output, 
DataRead (31: 0) - 32-bit data for recording, DataWrite (31: 0) - 
32-bit data for reading, OutData (31: 0) - 32-bit record data to 
memory (reading from memory), Split (3: 0) - the signal "1" 
indicates the readiness of buffering device to the split transaction 
completion from a corresponding processor, MID - processor 

node identifier, WriteFull - recording buffer overflow signal, 
ReadFull - read buffer overflow signal, queuesizeread - the size 
of the read queue, headread - the «head» of the read queue, 
tailread - the «tail» of the read queue, queuesizewrite - the size 
of record queue, headwrite is the "head" of the write queue, 
tailwrite is the "tail" of the write queue, buftail is the "tail" of the 
buffer queue, tailcpl is the "tail" of the processed read request 
queue. Suppose, the signal "1" appears on the lines Sel, 
TypeTrans, W at the moment of 127 ns. It holds for 5 cycles on 
these lines, i.e. there are 5 requests according to the 
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corresponding addresses in the decimal system (12, 10, 13, 19, 
20). Data is also set on the data line for the record to memory 
according to the specified addresses. At this time, the length of 
the record queue and the pointer to the "head" of the record 
buffer increases. Then the TypeTrans signal takes the value "0", 
which corresponds to the read operation. Now the signal "Sel" 
and "W" are only in "1". The reading queue is developed for 5 
cycles. Addresses are set on the address line, and processor node 
identifiers are set on the MID line. Then the signals Sel, 
TypeTrans, W take the values of "0". The processing of the 
transaction queue begins. The priority for the reading process is 
chosen as the highest one. First, the read queue is processed, 
followed by the record queue. If the address in the read buffer 
matches the address in the record buffer, the data is taken 
directly from the record buffer without accessing the memory. 
This process is monitored on the time diagram. Address 13 is 
present both the record buffer and the read buffer. If you trace 
along the diagram lines, you can notice that the data is 
immediately selected from the record buffer at this address. If 
the addresses do not match, the buffer device accesses the 
memory. At the time of access to the memory, the signal "1" is 
set on the MemR line. When the queue of processed messages is 
generated, the buffer device signals the requesting processor 
node that it is ready by setting the Split signal (processor 
number) to "1", at this point the processor takes its data. After 
the processing the read queue, the write queue is processed. 
Then the actions are repeated upon the receipt of requests for 
reading or writing. 

4 Conclusions 

The paper touches upon the issues of the hardware buffer device 
functional organization and its work algorithms. The device in 
question differs from earlier ones by the following: previously 
the task in MPS was solved using the memory with NUMA or 
UMA architecture with alternating addresses, which made it 
impossible to use the mode of transaction splitting on a CB. 

The result of this development use, implemented on the modern 
element base - PLIC, is memory loading reduction, the 
bandwidth of the subsystem "processor-memory" and the 
performance of the entire MPS are increased. 
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