AD ALTA 

 

JOURNAL OF INTERDISCIPLINARY RESEARCH

 

 

 

per share, main enterprise costs, total costs of annual wages, 
main entrepreneurship income, net profit after tax, return on total 
assets, or profitability on equity (Zhang and Zhong, 2015, p. 
179). The output is represented by a value copying the course of 
economic indicator by which the network was determined – a 
whole range of economic indicators may be used, while the most 
suitable are difficult to be set and complex or testifying 
(Galushkin, 2012). Different types of artificial neural networks 
may create the network architecture – according to what the 
neuron transmission function is, how neurons are interconnected 
mutually, how many input neurons, hidden layers there are, etc. 
(García, Giménez and Guijarro, 2013). Similarly, the amount of 
layers depends on the given model´s author´s consideration. If 
there are not so many in the neural networks, they learn quicker. 
If there are bigger numbers of layers, they are able to generalize 
better (Elsawy, Hosny and Razek, 2011). 
 
The disadvantage is that we never know how the network makes 
its decisions, and why it has decided the way. It is thus 
impossible to know the inner structure of this system. That is 
why neural networks are also termed as ´black boxes´ (Tzeng 
and Ma, 2005). The networks are very comfortable and practical, 
but the way they evaluate the enterprise exactly, is not always 
very clear (Shi, Bian and Zhang, 2010, p. 640). We also always 
operate with the probability that the response will be, in certain 
percentage, wrong. This fact considerably limits its use in areas 
with one-hundred-percent-flawlessness (Slavici, Mnerie and 
Kosutic, 2012). While evaluating an enterprise, networks are 
also sensitive to organization and preparation of data, but also to 
the whole configuration. To apply them, a high computing 
power is needed, and their processing takes a long time (Kim, 
An and Kang, 2004). 
 
Advantages in using artificial neural networks during a complex 
enterprise evaluation are the following (Ciobanu and Vasilescu, 
2013): 
 

 

Simple implementation, 

 

Possibility of parallel processing, 

 

Learning and generalization ability, 

 

Adaptation ability, 

 

Distributed representation and calculation. 

 
Nevertheless, there is a range of disadvantages while using 
artificial neural networks while evaluating an enterprise in a 
complex manner (Knez-Riedl and Mulej, 2014): 
 
They work with a so-called ´black-box approach´ - their inner 
functionality is not directly known, 
At the training stage they are computing-power consuming, 
Their processing often takes a long time, 
Networks are unable to solve other, similar problems other than 
those they are trained to solve, 
Networks are an approximation of the required solution – it is 
necessary to always count on certain error rate,  
Networks are prone to be over-trained. 
 
Only a few authors dedicate their work to applying neural 
networks in order to evaluate an enterprise in a complex manner. 
The reasons are probably reasonably significant disadvantages of 
artificial neural networks, and the existence of many complex, 
and often simpler models for enterprise evaluation. Zhang and 
Zhong (2015) have suggested a model based on artificial neural 
networks, which has a high prediction accuracy and its results 
are objective and exact. A similar model is presented by 
Makeeva and Bakurova (2012). The background for its creation 
is profitability, liquidity, indebtedness and return indicators. Al-
Shayea and El-Refae (2012) have created a model for insolvency 
prediction based on less used types of neural networks – 
GMDH

1,

 Counter Propagation and fuzzy ARTMAP

2.

networks. 

The most influencing factors when evaluating, are, according to 
them, net profit, total equity, costs on sale, sales, cash flow, and 
credits. Net profit, annual volume of work and work capital are 

                                                 

1

Group Method of Data Handling – Networks with inductive modelling. 

2

Adaptive Resonance Theory MAP – neural network hybrid architecture. 

the main indicators of financial performance of any building 
company (Mohamad et al., 2014). It was Mohamad et al. (2014) 
who have developed a hybrid model (an artificial neural network 
technique + genetic algorithm) with the aim to predict, based on 
the previously published data on financial statements, the 
amount of the three main given indicators of building 
companies´ financial performance. Complex enterprise 
evaluation methods created via artificial neural networks are 
often used by banks when considering credit requests – credit 
risk evaluation in a given enterprise (Mansouri and Dastoori, 
2013). A complex enterprise evaluation´s aim in this case is to 
minimize credit risk and improve decision-making process while 
establishing business relationships in economic, legal and social 
sphere (Yongli et al., 2013). A model based on GRNN

neural 

network, designed by Zhu et al. (2015) may serve as an example. 
It may evaluate credit risk efficiently. 
 
Complex enterprise evaluation methods are nowadays created by 
modern analytical models using computers and sophisticated 
mathematical models (Gholizadeh et al., 2011). Neural network 
imperfections, however, point to the fact that this technology 
still undergoes the process of development and improvement. 
Even so, they may be used as a complex enterprise evaluation 
indicator, while complemented and combined with other models 
very often. Many authors have proven that complementation by 
other models improves the calculation, and raises the efficiency 
and accuracy of the result (Ciobanu and Vasilescu, 2013, p. 
448). The obtained model outputs may be further compared to 
the other enterprises´ results or to the results of best enterprises 
working in the same branch (Rosillon and Alejandra, 2009). 
The aim of this contribution is to create a model, using neural 
networks, which will be able to predict the enterprise´s ability to 
survive possible financial distress. 
 
2 Data and Methods  
 
Basic data about enterprises, which is going to be analysed and 
examined comes from the Albertina database. These are 
enterprises classified among building enterprises by the Czech 
Statistical Office. These enterprises fall among the classification 
F-section in CZ-NACE (economic activity classification). The 
resulting file includes exactly 65 536 data lines. Each line 
consists of a hundred characteristics. Specifically, they are 
financial parameters and non-financial indicators. 
 
Financial parameters include all data from financial statements i. 
e. balance sheets, profit and loss statements, cash flow 
statements. Further, earnings before interest and tax (EBIT) is 
included. Non-financial indicators include enterprise 
identification (name and identification number), enterprise 
business district, number of employees and the enterprise 
auditor´s statement. 
 
It is common to start the paper with input data analysis from the 
perspective of their objective interpretation. Data analysis has 
been carried out, but only on the level of variable classification, 
not from the perspective of ´economic fundaments´. In case 
some available data is excluded already at the stage of data file 
preparation, we could reach a situation of excluding a variable, 
which, although refused by current economic theory, may 
significantly influence the result. Thus, we are facing a dilemma 
whether to include a greater amount of variables (some even 
against the sense of current knowledge) and obtain a result, 
which may be economically difficult to interpret, or whether the 
amount of variables should be decreased to values possible to be 
relatively easy interpreted today. I have chosen the first option. 
The economic environment has changed so much as we can not 
describe it using the same variables as we had done several 
decades ago. 
 
To prepare a data file MS Excel will be utilized. The data file 
will be imported into the DELL Statistica software in version No 
12 and version No 7 (result visualization). Subsequently it will 

                                                 

3

Generalized Regression Neural Network.

 

- 233 -