AD ALTA
JOURNAL OF INTERDISCIPLINARY RESEARCH
7. Elsawy, I., H. Hosny, H. and M. A. Razek. A Neural Network
Model for Construction Projects Site Overhead Cost Estimating
in Egypt. International Journal of Computer Science. 2011, 8(3),
273-283.
8. Fausett, L. Fundamentals of Neural Networks. New York:
Prentice Hall. 1994, 461 p. ISBN 978-0133341867.
9. Fotr, J. and E. Kislingerova. Integrating risk and uncertainty
into investment decision-making and valuation [Integrace rizika
a nejistoty do investičního rozhodování a oceňování]. Politická
ekonomie. 2009, 57(6), 801-826.
10. Galushkin, A. Neural networks. Fundamentals of the theory
[Nejronnie seti. Osnovy teorii]. Moskva: Goryachaya Linia-
Telekom. 2012, ISBN: 978-5-9912-082-0.
11. García, F., V. Giménez and F. Guijarro. Credit risk
management: A multicriteria approach to assess
creditworthiness. Mathematical and Computer Modelling. 2013,
57(7-8), 2009-2015.
12. Ghodsi, R., M. S. Zakerinia and M. Jokar. Neural network
and Fuzzy Regression Model for Forecasting Short Term Price
in Ontario. Proceedings of the 41st International Conference on
Computers & Industrial Engineering. 2011, 41(1), 954-959.
13. Gholizadeh, M. H., M. M. N. Langroudi, A. Bahmani and B.
S. Dizaji. Corporate financial distress prediction using artificial
neural networks and using micro-level financial indicators.
Interdisciplinary Journal of Contemporary Research in
Business. 2011, 3(5), 595-605.
14. Golub, G. and W. Kahan. Calculating the singular values and
pseudo-inverse of a matrix. SIAM Numerical Analysis. 1965,
2(2), 205-224.
15. Haykin, S. Neural Networks: A Comprehensive Foundation.
New York: Macmillan Publishing. 1994, ISBN 0023527617.
16. Hsiang L. Ch., A., X. Wang, Z. H.Lee, J. and Ch-Y. Fu.
Biotech firm valuation in an emerging market – evidence from
Taiwan. Asia-Pacific Journal of Business Administration. 2013,
5(2), 92-102.
17. Kim, G.-H., S. H. An. and K. I. Kang. Comparison of
construction cost estimating models based on regression
analysis, neural networks, and case-based reasoning. Building
and Environment. 2004, 39(10), 1235-1242.
18. Knez-Riedl, J., and M. Mulej. Idimt 2014. Informing the
Management by a Requisite Holistic Assessment of the
Creditworthiness of an Enterprise. Proceedings of the 12th
Interdisciplinary Information Management Talks Conference.
2014, 12, 123-136.
19. Kubenka, M and O. Slavicek. Detection of Cognation
between Creditworthy Models and Bankruptcy Models.
Proceedings of the 7th International Scientific Conference on
Managing and Modelling of Financial Risks. 2014, 426-433,
ISBN 978-80-248-3631-7.
20. Kuzey, C., A. Uyar, A. and D. Delen. The impact of
multinationality on firm value: A comparative analysis of
machine learning techniques. Decision Support Systems. 2014,
59, 127-142.
21. Machek, O. and J. Hnilica. Total Factor Productivity
Approach in Competitive and Regulated World. Procedia -
Social and Behavioral Sciences. 2014, 57, 223-230.
22. Makeeva, E. and A. Bakurova. Forecasting Bankruptcy Oil
and Gas Companies Using Neural Networks. Journal of
Corporate Finance Research. 2012, 23(3), 22–30.
23. Mansouri, S. and M. Dastoori. Credit Scoring Model for
Iranian Banking Customers and Forecasting Creditworthiness of
Borrowers. International Business Research. 2013, 6(10), 25-39.
24. Mertlova, L. Comparison of Financial Situation in
Agricultural Companies in the Vysocina Region. Proceedings of
the 10th International Scientific Conference on Financial
Management of Firms and Financial Institutions. 2015, 791-798,
ISBN 978-80-248-3865-6.
25. Mohamad, H. H., A. H. Ibrahim, A. H. and H. H. Massoud.
Modelling the financial performance of construction companies
using neural network via genetic algorithm. Canadian Journal of
Civil Engineering. 2014, 41(11), 945-954.
26. Mostafa, M. M. Modeling the competitive market efficiency
of Egyptian companies: A probabilistic neural network analysis.
Expert Systems with Applications. 2009, 36(5), 8839-8848.
27. Parker, D. B. Learning logic. Technical Report TR-47,
Cambridge, MA: MIT Center for Research in Computational
Economics and Management Science. 1985.
28. Patterson, D. Artificial Neural Networks. Singapore: Prentice
Hall. 1996, 477 p. ISBN 9780132953535.
29. Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P.
Flannery. Numerical Recipes in C.: The Art of Scientific
Computing (Second ed.). Cambridge University Press. 1992, 925
p. ISBN 0-521-43108-5.
30. Rosillon, N. and M. Alejandra. Financial analysis: a key tool
for efficient financial management [Análisis financiero: una
herramienta clave para una gestión financiera eficiente]. Revista
Venezolana de Gerencia. 2009, 14(48), 606-628.
31. Rumelhart, D. E., G. E. Hinton and R. J. Williams. Learning
internal representations by error propagation. In D. E.
Rumelhart, J. L. McClelland (Eds.) Parallel Distributed
Processing, Vol 1. Cambridge, MA: MIT Press. 1986, 318-362.
ISBN 0-262-68053-X.
32. Savvidis, S. and D. Ginoglou. Evaluation of the impact of
business on the environment using green accounting indexes and
modern statistical methods. South-Eastern Europe Journal of
Economics. 2013, 11(1), 49-58.
33. Sedlacek, J. Financial analysis of the enterprise [
Finanční
analýza podniku]. 2. ed. Brno: Computer Press. 2011, 154 p.,
ISBN 978-80-251-3386-6.
34. Shepherd, A. J. Second-Order Methods for Neural Networks.
New York: Springer. 1997, 145 p., ISBN 978-3-540-76100-6.
35. Shi, Ch. D., D. X. Bian and C. S. Zhang. Logistics company
performance evaluation by BP neural network and DEA. 2010
2nd IEEE International Conference on Information Management
and Engineering IEEE. 2010, 640-643.
36. Slavici, T., D. Mnerie and S. Kosutic. Some applications
artificial neural networks in agricultural management. Actual
Tasks on Agricultural Engineering: Proceedings of the 40:
International Symposium on Agricultural Engineering, Opatija,
Croatia. 2012, 40(1), 363-373.
37.
Smeureanu, I., A. Dioşteanu, C. Delcea and L. Cotfas.
Business Ontology for Evaluating Corporate Social
Responsibility. The Amfiteatru Economic Journal. 2011, 13(29),
28-42.
38. Stehel, V. and M. Vochozka. The analysis of the economical
value added in transport. Nase More. 2016, 63(3), 185-188.
39.
Synek, M., V. Hoffmann and I. Mackenzie.
History and development of the field of business economics
[
Historie a vývoj vědního oboru podniková ekonomika].
Politická ekonomie. 2013, 61(4): 388-406.
40. Tzeng, F. Y. and K. L. Ma. Opening the Black Box - Data
Driven Visualization of Neural Networks. Proceedings of the
Conference Visualization, IEEE. 2005, 383-390.
41. Vesely, A. Economic classification and regression problems
and neural networks. Agricultural Economics. 2011, 57(3), 150-
157.
42. Vlachy, J. Business Strategy and Financial Theory [Strategie
podniku a finanční teorie]. Politická ekonomie. 2009, 57(2), 147-
162.
43. Vochozka, M. Development of methods of complex
performance evaluation of the company [Vývoj metod
komplexního hodnocení výkonnosti podniku]. Politická
ekonomie. 2010, 58(5), 675-688.
44. Vochozka, M., J. Jelinek, J. Vachal, J. Strakova a V. Stehel.
Using of neural networks for comprehensive business evaluation
[Využití neuronových sítí při komplexním hodnocení podniků]. 1.
ed. Prague: C. H. Beck. 2017, 234 p., ISBN 978-80-7400-642-5.
45. Vochozka, M., Z. Rowland, V. Stehel, P. Suler a J. Vrbka.
Modelling of company´s costs using neural networks
[
Modelování nákladů podniku pomocí neuronových sítí]. 1. ed.
Ceske Budejovice, Institute of Technology and Business. 2016,
114 p. ISBN 978-80-7468-112-7.
46. Wagner, J. Performance Measurement – Development
Trends of the 2
nd
Half of the 20
th
Century [Měření výkonnosti -
vývojové tendence 2. poloviny 20. století]. Politická ekonomie.
2011, 59(6), 775-793.
47. Wang, M., S. J. Rees, and I. Liao. Building an online
purchasing behavior analytical system with neural network.
Proceedings of The third conference on data mining methods
and databases for Engineering, Finance and other fields.
- 237 -